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CHAPTER 1
INTRODUCTION

Due to the high strength-to-weight and stiffness-to-
weight ratios, composite materials are ideal for weight-
sensitive structures such as aircraft, spacecraft, and
automotive vehicles. In recent years, with the advent of
jet propulsion, particularly with the current increased
interest in short take-off and landing ajircraft, it has

become necessary to pay increasing attention to the

moticns depend strongly on the structure's damping or
capability for dissipation of vibratory energy [1]. 1In
addition, a new type of excitation has become more preva-
lent, random excitation either of mechanical or acoustical
origin [2]). For example, jet engine exhaust generally
contains a noise spectrum wide enough to excite most of
the natural frequencies encountered in aircraft structures
(3]. The natural resonance phenomena, so produced, can be
very destructive. Since near resonant conditions can no
longer be avoided in many types of structures, the maximi-
zation of damping within a structural system provides a
most useful concept in controiling resonance [4].
Unfortunately, as will be shown in later chapters, high
damping is mostly coupled with low stiffness, and high

1
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stiffness is mostly coupled with low damping. Therefore,
the optimization of damping and of the stiffness-to-weight
ratio is a practical idea in designing a proper composite

material to be used in aircraft and space vehicles.

1.1 Literature Survey

Most results from a series of researches on damping
beginning in the 1920's [5] indicated that damping is a
material property.

Kimbail and Lovell (5] experimentally showed that
for stress cycles of frequency of from two to three a
minute, up to fifty a second the frictional loss (a kind of
energy 1¢ss) is indcpendent of the freguency hut is depen-
dent on the amplitude of strain of the cycles for eighteen
dgifferent solids, including several metals, glass, cellu-
loid, rubber and maple wood, when strain was below the
elastic limit. Crandall [6] pointed out that the values for
material damping which will be introduced in Section 2.3.3
encountered in practice ranged from about 0.00001 to 0.2;
however, Lazan [4] pointed out the material damping ranged
from 0.001 to 0.1. And the material damping depends on
both the amplitude and frequency of the oscillation. If,
however, the system is completely linear, then damping is
independent of amplitude f[6].

Recently, the composite materials got more attention

in industrial application. Lazan [4] gave & detailed

review on material damping of materials anc material




composites. Kume, Hashimoto and Maeda [7] used the damping-
stress function, derived by Lazan [8], to calculate the
material damping of cantilever beams. They found that low
order modes of a cantilever beam with equal maximum stress
amplitude gave almost the same material damping, thecreti-
cally, and experimental results have the same order of
magnitude as the theoretical results when the maximum stress
amplitude is less than a certain value. Schultz and Tsai
(9] indicated that unidirectional glass fiber reinforced
composites exhibit anisotropic, linear viscoelastic

behavior when those undergoing small oscillation and that
damping increases in magnitude with change in fiber orien-

tation angle with respect to loading direction in the

-~ :_..0 ana ano ]
vliuclL F Lband 4 TV

, 45°. Ni, Lin, and Adams [1¢, 11

: used the laminated plate theory and two-dimensional energy
approach to predict the flexural damping of laminated

! composites. In their work, damping coefficient was deter-
mined by free-free flexural modes of vibration {12]. Siu

' and Bert [13] discussed the vibration of composite plates

having material damping. Suarez, Gibson, and Deobald [14]

observed the dependence of damping on frequency cf fiber

reinforced epoxy or polyester. Gibson and Plunkett [15]

found that for small strain, damping and stiffness are

independent of amplitude of strains, but, once the thres-

hold strain is exceeded (i.e., failure starts), the
resulting increase in damping is much more significant

than the corresponding reduction in stiffness. Similar
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results were also observed by Tauchert and Hsu [16]. Bert
and Clary [17, 18] gave a complete review on measurement
and analysis of damping and dynamic stiffness for compo-
sites. The first paper to optimize the damping of the
structure was perhaps that of Plunkett and Lee [19]. The
damping of a beam is improved by introducing thin con-
strained visco-elastic layers on the top and bottom of the
structure, These viscoelastic layers are then stiffened
by properly designed constraining layers.

Cox {20] discussed the stress distribution in fibrous
materials. Cox's shear lag stress analysis was later on
used to analyze the strese distribution of short-£fiber
composites, as in studies [21, 22]. DPhotoelacticity [23,
241 and finite element methods [25, 26] were used to
investigate the stress concentration in the matrix around
fiber tips of short-fiber composites. Strength of short-
fiber composites was analyzed in several studies (27, 28].
Analysis of complex moduli for such kind of material was
presented in studies [29, 30, 31}. High damping of short-
fiber composites was analytically and experimentally
cbserved in references [31, 32]. Material damping of
randomly oriented and unidirectional laminar short-fiber
composites has been discussed by Sun, Wu, Chaturvedi, and

Gibson (33, 34].

1.2 Scope of This Study

The objectives of this study are to analyze the mate~

rial Gamping and to optimize the specific stiffness (the




ratio of the stiffness to tha density) and material

damping of continous and/or discontinuous fibers rein-

forced laminated composite structure elements. The work
involved in this research is briefly introduced as
follows:

A, To develop a short-fiber composite model to determine
the moduli cf short-fiber composites.

B. To analyze the stiffness and material damping of
unidirectional laminar fiber composites, randomly-
oriented fiber composites, and certain kinds of
laminated fiber composites through classical lami-

nated plate theory approach.

(@}

To analvze the material damping of laminated fiber

composites by an energy approach, where a three-
dimensional displacement finite element method is
used.

D. To optimize material damping and the specific stiff-

ness of laminated composite plates.

1.3 Material Constants and Ranges of Design Parameters

In this study, four different kinds of widely-used
fiber composites (i.e., glass epoxy, Kevlar epoxy,
graphite epoxy, and boron epoxy) are involved; and much
interest is concentrated on graphite epoxy and Kevlar

epoxy, because, generally speaking, the former has higher

stiffness, while the latter has higher damping.,
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In order to compare with the experimental results of
Suarez, etc. [35, 36], the material constants used in this
study are the same as those of the experimental specimens.
Some material constants, which are not given in those
experimental data, are obtained from reference [37].
Unless specially specified, the material constants used in
this study are given in Table 1l.1.

The length of fiber is one of the characteristic
parameters of short-fiber composites. Due to the
existence of a critical fiber length, Se (i.e. the minimum
fiber length in which the ultimate strength og, can be

achieved [38]), there is a minimum value for fiber length,

:'3 2 _SE =f_£_g J'l
d d 21y
where 1, is the matrix yield stress in shear, and d is the

Y
fiber diameter. The lowest Ofn of thocse four fiber com-

posites is 2750 Mpa, as given in reference [37], for
grapaite T-300. And the matrix yield shear stress is,
according to the manufacturer's test results, 97 MPa of
AS4/3501 graphite-epoxy tape. Therefore, the fiber aspect
ratio, the ratio of fiber length to its diameter, should

be

s/d 2 14.2 1.2




In this study, the fiber aspect ratio is chosen to be
between 25 and 10000; while the fiber voiume fraction Ve
is chosen to be 0.65 for the most cases or 0.5 for

randomly oriented fiber composites.

Table J.l: Material Properties Data of the Matrix and

the Fibers
Constants Matrix Fibers
Epoxy Glass Kevlar Graphite Boron
E, (Gpa) 3.94 72.4 99.8 175.8 381.9
E, (Gpa) 3.94 13.8 6.9 13.8 35.0
G; 5 (Gpa) 1.465 27.6 13.8 27.6 70.0
V12 0.345  C.22 0.376 0.16 0.21

k (Gpa) 4.236

n 0.015 0.0015 0.011 0.0015 0.0019
plkg/m3)  1220. 2539. 1479. 1760. 2481.
3 _,_ 2 2 2 2

E, - 1 1 1 1

where &; and g, are constants used in Helpin-Tsai

Equation, nj is the longitudinal damping, k is the bulk

modulus, and p is the density.
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CHAPTER 2
DAMPING

2.1 Dpefinition of Damping

The process by which vibration steadiily diminishes in
ampliitude is called damping. In many ways, the assumption
that systems possess no damping is a mathematical conven-
ience, rather than a reflection of physical evidence. 1In
fact, if a system is set in motion and allowed to vibrate
freely, the vibration will eventually die out; the rate of
decay depends on the amount of damping. This reduction in
vibrating amplitude occurs because the enerxgy of the
vibrating system is dissipated as friction or heat or is
transmitted as sound [39]). And this is why damping is also
interpreted as any phenomenon within the body of the
material where energy is dissipated [40].

The concept of an urdamped system serves not only a
useful purpose in analysis, but can aiso be justified in
certain circumstances. For example, if the damping is
small and one is intexested in the free vibration of a
system over a short interval time, there may not be
sufficient time for the effect of damping to become
noticeable. Similarly, for small damping one may not be
able to notice the effect of damping in the case of a
system with harmonic excitation, provided the driving

8




frequency is not in the neighborhood of any of the natural
frequencies of the system [41]. On the other hand, damp-
ing of a given system should be considered if this system
is subjected to vibration near its resonant frequencies

because damping has a large influence on the amplitude in

the frequency rcyion near resonance (42].

2.2 Damping Mechanism

There are many mathematical models representing damp-
ing. The mechanism of damping can take any of these
forms and often more than one form may be present at a
time. Therefore, in order to analyze or predict the
damping of a given system, one ideally should take intc
account all possible damping mechanisms; fortunately, in
most practical cases, one or two mechanisms predominate so
that one may neglect the effect of all others. Three
widely used mathematical models for damping are introduced

below:

2.2.1 Viscous Damping

The viscous damping force is defined as
Fq = -CX 2.1

where the constant C (of dimension force per unit velocity)
is called the ccefficient of viscous damping. This type of

damping occurs in lubricated sliding surfaces, dash-pots,

hydrolic shock-absorbers [43]. The minus sign indicates
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that this damping force is always opposite to the direc-
tion 0of the motion. The work done by damping force,
namely, dissipated energy during one cycle of

harmonic motion, x = Agsinwt, wil be

21
2

] I -
(UD)cyc = | Fq dx = . C(dt) t = nCAow 2.2

where w is the circular frequency in radians per unit time.
Apparently, dissipated energy due to viscous damping in a
cyclic motion is proportional to the frequency and to the

square of the amplitude of motion.

2.2.2 Dry or Coulomb Damping

This type of damping occurs in the slidingof dry
surfaces. The damping force during motion is constant and

is given, according to Coulomb's law, by
Fd = ~fN 2.3

where N is the normal component of the force upon the sur~
face of contact, and f is the coefficient of dry friction.
Damping induced by the joints is mainly because of dry
damping., And it is known that damping of built-up
structures (i.e. structure made by joining together skins,

strings, frames, etc.) could further be caused by the

effect of the joint [l].




11

2.2.3 Material Damping

This kind of damping is also referred to as internal,

hysteresis or structual damping. It is caused by the

internal friction, the viscoelastic behavior of the

material, and the interfacial slip in the material itself.
It 1s well known that an elastic body whichis

repeatedly stressed becomes hot. If an elastic body is

subjected to forced oscillation, a positive work of the

S SO TR,

exciting force must be spent to keep the amplitude of the
oscillations constant in time. The reasc : for the heating
of the body and the expenditure of external work is the
internal friction of the material. Although this
explanation can be easily accepted in a gqualitative way,
it is more difficult to translate the problem into
mathematical terms.

Three principal hypctheses have been proposed to
explain the phenomenon of internal fricticn, i.e., the vis-
cous theory, the hereditary theory, and the hysteresis loop.

Viscous theory. The viscous theory assumes that in

solid bodies, there exist some viscous actilons which can

be compared to the viscosity of fluids. These viscosity

Ml v IREDV IS ST Y Y M T LR

effects are assumed to be proportional to the first

time derivative of strain. The coefficient of the
proportionality (constant for each material at constant
temperature) is called the coefficient of viscosity.
Based on this assumption, many mathematical models (stch

ae Maxwell model, Kelvin-vVoigt model, and three-parameter

XS OB SR AL <

AEN, NS TGN THN TS SR B % VoS D% 0% RPN T T 0. O Vo0 S TS A AR TR R ¥ 10 0 P R R BT (F S0 T, T8 Y R ALY S RWLES U, T 1. V.05,
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models [44, 45]) have been introduced to represent dif-
ferent materials. For the case of Kelvin-Voigt model
under normal deformation, the relationship between stress

¢ and strain ¢ is expressed by

where E is Young's modulus and £ is the coefficient of
viscosity of the material.

Hereditary theory. The hereditary theory attributes

the dissipation of energy due to material damping to the
elastic delay by which the deformation lags behind the
applied force (43]. According to this theory, the defor-
mation at a given instant, instead of depending only on the
actual applied stress at that time as it would if the
materjials followed Hooke's law, depends on all the

stresses previously applied to the elastic body. The

stress-strain relationship is given by

rt
o = Ee +j o(t, 1) (1) dx 2.5

where t is the actural time and 1 is an instant of time
between t = == and t = t. The function ¢(t, 1) is
called the hereditary kernel or memory function.

Hysteresis loop. For a material under a cyclic

loading, the stress—strain curve is a closed curve which

is called the hysteresis loop. The physical meaning of

BBOAEAIOO 1A AN AU N0 A T A U TR ™ 7t e N AN U " n R ™ T T I oA U AW LN AR WA S oY
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! this hysteresis loop is given in Section 2.3. The area

within the hysteresis loop is proportional to the

dissipated energy. This area, beilng a material property,

may or may not depend on the frequency. A mathematical

model can be used to explain the energy dissipation, when
; this energy dissipation is independent of frequency in a
material loaded by a cyclic force. 1In this mathematical
model, the damping force is assumed to be proportional to

velocity and inversely proportional to frequency, i.e.

e A 4

= h ¢
Fd--(ax 2.6

If an external force F, is applied just enough to
balance the damping ferce and te maintain a simpie

harmonic motion, x = Aosinwt, then

F_ = Kx +

el
4
N
N

o

where Kx represencs the elastic force of the system; for

example, a single spring, w is the circular frequency,

A . e T T L o Sl . Skt T U U B W Sl A "N ¢

A, is the amplitude, and h is the hysteretic damping
constant. The relation- ship between F, and x is given in
Equation 2.7, and the plot of external foxce F, as a

' function of displacement is a skewed ellipse, as in

Figure 2.'.

2
X, 2 F, - Kx
- =z -
( L + (—E_EK;_) 1 2.8

1
WSO D o o Tl e L L LA LA W WO Wt 5 ) A (G Lo 3 b W R T W M b bW L L e W A
- __________________________________________________________________________________________________________________________________]
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A) .
CV

Figure 2.1: Sketch of Hysteresis Loop

The work done by damping force (dissipated energy) in one

cycle (UD) s

cyc i

2.9

Thus, the enerqgy dissipated in one cycle is proportional
only to the square of the amplitude. This expression
agrees with the results of experiments of Kimball and
Lovell [5] which indicate that for a large variety of
materials such as metals, glass, rubber and maple wood,

subject to cyclic stress such that the strains remain

below the elastic 1imit, the internal friction is entirely
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dependent on the rate of strain. Equation 2.9 also agrees
with Lazan's notes [46] on dissipated energy. For example,
at low amplitudes of stress, the dissipated energy is
proportional to the square of the stress amplitude, and the
hysterestic loop is elliptical in form.

Unlike homogernieous materials, fiber reinforced mate~
rials have interfaces between matrix and fiber. When a
fiber reinforced composite is subject to a tensile strain
cycle, the high shear stress may cause the fiber matrix
interface to fail so that energy is dissipated by
friction as the matrix slides over the fiwvers ([47]. Damp-
ing is then increased due to interfacial slips between
matrix and fiber. In this study, perfect bonding between
matrix and fiber is assumed; consegeuntly, interfacial slip

is not considered.

2.3 Types of Damping Representations

Many different disciplines have been concerned with
damping measurements, and this has further complicated
nomenclature. Confusion has been caused not only by the
large variety of damping units used, but also by the lack
of unique definition for many well-accepted units. It is,
therefore, desirable to review the various damping units

currently used and to indicate relationcships between them.
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2.3.1 Damping Ratio ()}

Figure 2.2 shows a single degree of freedom system

with viscous damping, excited by force F(t).

[
AN
\ A4
By cned
L =
0

F(t)

Figure 2.2: Sketch of Viscous Damping Model

Its differential equation of motion is found to be
MX + Cx + Kx = F(t) 2.10

If F(t)=0, one has the homogeneous differential equation
whose solution corresponds physically to that of free-

damped vibration. The general solution to this homogeneous

equation is

- t -bt
X = e (c/2m) ¢ (cleb + cye b ) 2.11

where

b = [(c/2m)2- k/m]ll2 2.12
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¢y and ¢, are constants to be determined by inittail

cenditions. In order to have oscillation, one will expect

to have

(c/2m)2 < k/m 2.13

Apparently, there exists a critical value ¢, for c,
2
when (c¢/2m) equals k/m. Damping ratio (381, ¢, is

defined as

= _C 2.14
4 g
where
L
]
Cc = (4mk) 2.15

2.3.2 Logarithmic Decrement ({§)

A convenient way to determine the amount of damping
present in a system is to measure the rate of decayof
free oscillations. Logarithmic decrement [38] is defined
as the natural logarithm of the ratio of any two
successive amplitudes, as in Figure 2.3, of a free

vibration.
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Figure 2.3: Sketch of Logarithmic Decrement

2.3.3 Loss Tangent (tan @)

It is well known that polymer behaves as viscoelastic
material, i.e., combining two material properties, one of
which is perfectly elastic, while the second is viscous
filuid [43]. Let such a viscoelastic material be subject
to a sinusoidal stress experiment at frequency w such
that the period 2n/w of oscillation is sufficiently large
as compared tc the transit time of elastic waves through
the specimen that stress and strain can be considered
uniform throughout the test section. Under these condi-
tions, the response to a steady-state sinusoidal stress o
is a steady-state sinusoidal strain € at the same

frequency [44], out of phase by the angle ¢, e.q.

¢ = 04 sinwt 2.17
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€ = €4 sin(wt - ¢) 2.18

Both the response amplitude and the phase~shift (or phase
angle) ¢ are frequency-dependent, but in the linear range

€o is proportional to o,. The phase relationships are

o

conveniently shown in the rotating-vector representation of

simple harmonic motion, as in Figu e 2.4,

E'e F77"77 'A ‘

% /
(A i
|
i

\ J B

0 ==
E €,

Figure 2.4: Rotating-vVector Representation of
Harmonic Motion

The rotating vector OB of magnitude E'cte lags behind
the stress OA by ¢ radians. Stress OAR may be resolved
into two components, E'eo in phase with strain and E'eo.
7/2 radians out of phase with strain, as in Figure 2.4.
Here E' is the storage modulus and E" is the loss modulus.

The loss tangent tan ¢ is defined as
tan ¢ = E"/E' 2.19

Some authors call tan ¢ the loss coefficient. The ratio
E"/E' is a measure of the ratio energy loss to energy

stored. For viscoelastic material, the moduli are often

expressed in terms of a complex number, called complex
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modulus. In this study, the superscript * is used to

indicate the complex modulus, for example:

E* = E' + iE" 2.20

where 1 is J-1.

2.3.4 Specific Damping Capacity for Cyclic_Loading (wc)

The physical meaning of the hysteresis loop of
Section 2.2.3 is considered here. Since materials do not
behave in a perfectly elastic manner even at very low
stress [46], inelasticity is always present under ail
types of loading, although in many cases extremely precise
measurements are necessary to detect it. Under a cyclic
loading condition, inelastic behaviors lead to energy dis-
sipation. This means that the stress-strain (or load-
deformation) curve is not a single-valued function but
forms a hysteresis loop. Energy is absorbed by the mate-
rial system under cyclic load, and the energy absorbed is

proportional to the area within the hysteresis loop [46],

as in Figure 2.5.
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A )
{7

Figure 2.5: Hysteresis Loop of An Inelastic Body

Consequently, another measurement of damping called
sper' fic damping capacity (46] can be obtained by compar-
ing e energy dissipated (or absorbed) (UD)Cyc of the
syste.. in a cycle with -.e maximum strain energy stored

(U ‘n the system J.1.ag that cycle.

s)max

Vo = (UD)cyc/(Us)max 2.21
In Appendix A, viscoelastic material is shown to have such
a hysteresis loop under cyclic loading, and the same
expression for specific damping capacity is obtained. The
diftference is that specific damping of viscoelastic
material is also a function of frequency, as reported

in studies [48, 49)]. This is because the storage and loss

moduli are functions of frequency.
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For small damping, the relationships between those
representations of damping are given in references

(50, 51].
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CHAPTER 3
DAMPING OF UNIDIRECTIONAL FIBER COMPOSITES

3.1 1Introduction

The objective of this chapter is to determine theo-
reticaliy the damping of unidirectional fiber reinforced
polymer matyix composites. The major damping mechanism of
such composites is the viscoelastic behavior of the poly-
mer and fibers. The analysis is carried out by first
applying the concepts of balance of force and equal strain
energy on short-fiber composite model to determine the
longitudinal modulus of short-fiber composite. Then the
elementary mechanics approach is used to £ind the modulus
E, along the loading direction as a function of the mecha-
nical properties of the fiber and matrix materials. This
is followed by applying the viscoelastic-elastic
correspondence principle {45, 52] to express the mechani-
cal properties of the composite, fiber, and matrix; then
after the real and imaginary parts of complex modulus are

separated, the damping of the composite can be obtained.

23
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3.2 Damping Analysis of Unidirectional Fiber Composites

3.2.1 short-Fiber Composite Model

The short~fiber composite model is composed of a
finite~length fiber and the polymexr matrix, as in

Figure 3.1(a).

V)

I it

1 o
n
.“.’u Tx 2‘ r
=7 T°H I '
by \
Fiber| 4 ' s L
: nI |
o=y 4
~o= P —d—
T x -t TT .
( \ ‘ k—)

L | HIH

a g
(a) (b) (c)
Figure 3.1: Short-Fiber Compcsite Model

Figure 3.1(c) is the homogeneous material equivalent to
the composite of Figure 3.1(a). Figure 3.1(b) is the
front middle longitudinal section view of Figure 3.1(a),
where d and s are the diameter and the length of fiber
respectively; D and L are the diameter and the length of
the composite model, respectively; and P is interpreted as
the distance between fiber tips along fiber direction.

The ratio of P to s is defined as R and is interpreted as
the degree of discontinuity. During the derivation of

Young's modulus along the fiber direction, the short-fiber

composite model is treated as if it is composed of two
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materials connectedin series along the flber direction.
One material which is between sections H and H' is the
mixture of fiber and matrix having length s, while the
other material is just the pure matrix having length P.
As in some other analytical work on short-fiber
composites [23, 31, 32], the results of Cox's shear lag
stress analysis [20] are used in this study. The expres-
sion for elastic stiffness of the discontinuous fiber
composite is derived from the average of filber stress
based on Cox's fiber stress distribution (in which the

longitudinal fiber stress is a function of position).

or = erEe {1 = cgsth(s/2-x)J} 3.1
L UL = cosh(Bs/2)

where x, B, and Bs/2 are defined in reference [31], and €¢
is the strain of the fiber. 1In this study, the square
packing array of fiber composites is considered; there-
fore, Bs/2 can be written, according to reference [31], as

ﬁ§=2_ ( Gm )1/2 3.2
2

s
d Ef vn I
4v

£

The average fiber stress is

o 1 5/2 3.3
Of = -?/—:—2*— Uf dx .
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Substitute Equation 3.1 into Equation 3.3

e - tanh(Bs/2)
Uf Gf Ef [l BS/Z ] 3.4

For the composite between secticns E and H' in Figure
3.1(a), in order tc¢ have static equilibrium, the

total longitudinal force q applied to this composite

must be

q= acAc=3fAf+amAm 3.5
Therefore,

- - ’ - r

o, = F. €. = 0¢ Ve + O Vp 3.6

where v; and V; are the fiber volume fraction and matrix
volume fraction within sections H and H' separately.

It is assumed that the composite, fiber, and matrix (all
between sections H and H') have the same extensional
strain ¢. The longitudinal modulus of material between

sections H and H' can be obtained from Equation 3.6.

‘ ’
= _ tanh{Bfs/2) L
E. = E¢ Vg [1 8572 1 + Eg V 3.7 B
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4 14
If Vg and V,, are expressed in terms of V¢, Vi, and R, Equa-

tion 3.7 can be rewritten as

BC = Ef(vf + VfR) (L - _______L_tanh(Bs 2)] + Em (Vm = va)
Bs/2 3.8

Alternatively, if the same assumption is used as in conti-
nuous fiber comvosites is considered, the fiber stress
along longitudinal direction is assumed to be uniform
everywhere in fiber, and the longitudinal modulus of
material between sections H and H' can be obtained by

using rule of mixtures.
EC = Ef (Vf + VfR) + Em(Vm - Vf R) 3.9

Equations 3.8 and 3.9 show that for continuous fiber com-
posices, the longitudinal Young's modulus obtained by the
rule of mixtures is higher than that obtained by Cox's
analysis. This is because in the rule of mixture
approach, uniform lcngitudinal fiber stress is assumed,
while in the Cox's approach, uniform longitudinal fiber
stress exists only at the locations far away from the
fiber tips, and this longitudinal fiber stress reduces to
zero at fiber tips. Finite element stress analyses [25,
26] show that the reduction of longitudinal fiber stress
around fiber tips does exist; and the magnitude c¢f this

stress is not zero but finite. So it is hard to say which

approach (rule of mixtures or Cox's analysis) is more
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nearly correct. However, Table 3.1 shows the values of
tanh (Bs/2)/(Bs/2) of graphite epoxy and Kevlar epoxy with
V¢ being 0.7 or 6.4. This table indicates that the modi-
fication term tanh(B8s/2)/(Bs/2) becomes importart when
fiber volume fraction and fiber aspect ratio are both
small. On the other hand, when the fiber volume fraction
is greater than 0.4 and the fiber aspect ratio is greater
than 100, the effect of tanh(Bs/2) (Bs/2) could be

neglected.

Table 3.1: Influence ¢f V} and s/d on tanh (Bs/2) (Bs/2) ”i;

Composite \Z s/d tanh (Bs/2)/(Bs/2) §
Graphite-epoxy 0.4 5. 0.725
Graphite-epoxy 0.7 5. 0.369
Kevlar-epoxy 0.4 5. 0.610
Graphite-epoxy 0.4 25. 0.180 S
Graphite-epoxy 0.7 25. 0.074 e
Kevlar-epoxy 0.4 25. 0.135 S
Graphite-epoxy 0.4 100. 0.045

When the same external stress ¢ is applied to short-
fiber composite model and to its equivalent homogeneous
materials, the same strain energy density U is presumed

for those two matericls (Figure 3.1(a) and Figure 3.1l(c))

u, = U 3.10
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and

N

3.11

nmlo.
twm

%

[ =
L
Dl

where E; is the longitudinal Young's modulus of the homo- "'_’,'},'
geneous material equivalent to short-fiber composite
model. After Equations 3.11 and 3.12 are substituted in

Equation 3.10, E; can be expressed as

E E
E = c__m 3.13
L 1
—_— + E ——
¢ TR * "n T+E

where E_ can be obtained by Equation 3.8 or Equation 3.9,
and R is the ratio of P to s. When R equals zero, Ep
equals E,. On the other hand, if R is a very large
number, E; will be very close to E;. Since the fiber
aspect ratio considered in this study is between 25 and
10,000, unless specially mentioned, the modified Cox's
analysis (i.e., Equations 3.8 and 3.13) is used to

anaylize the longitudinal Young's modulus of short-fiber

composite model.
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It should be noted that the continuous fiber compo-
site can be induced either by letting the fiber aspect
ratio be a very large number in the modified Cox's analy-
sisor by letting R be zero in the modified rule of

mixture.

3.2.2. Damping of Aligned Short-Fiber Composites

A typical representative volume element of off-axis,

short-fiber composite is shown in Figure 3.2

/
/
Fiber /4’1 ,’ \
/

/ ) Matrix
/ A
KA. 7
LY

Figure 3.2: Representative Volume Element of Off-Axis
Short-Fiber Composites
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For a continuous aligned composite, the cff-axis modulus

E, along the loading direction is given in reference [(38]

X

4 4 v 2 2
1l _.cos® ,s8in@, (L_ .2 LT 5inh 9 cos @

Ex EL ET Grr EL

3.14

where E; and Eq represent the moduli along and transverse
to the fiber direction respectively, GLT is the in-plane
shear modulus, and Vi T is the major Poisson's ratio.
Equation 3.14 can be easily derived from the elementary
mechanics approach for off-axis continuous fiber
composites. For off-axis aligned short-fiber composites,
one can derive a similar expression for E, from Equation
3.14 by replacing Ey, Egq. Gpps and vpop by the correspond-
ing formula for aligned short-fiber composites. The
longitudinal modulus can be obtained from Equations 3.8
and 3.13. The transverse modulus Ep, in-plane shear
modulus Gpq and the major Poisson's ratio, those material
constants are assumed to be independent of length of
fiber, can be obtained by using the Halpin-Tsai Equation

(53] and the rule of mixtures, i.e.

E =E 1 £ 3.15

2 £ 3.16
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Vi = VELT VE Y Vm Vm

where

T i 3.18

n o= (Gepp/Cp) — 1 3.19

Up to now, all eguations presented in this chapter
are derived for elastic material. When a viscoelastic
material is considered, the elastic-viscoelastic
correspondence principle ([52] can be used to obtain the
corresponding relationships of viscoelastic material. For

viscoelastic material the basic material properties are

redefined as
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* =t 0

* ] L]
EfT = EfT + i EfL
* - " o
Cfrr = Sfrrt 1 Gfry e
E* =E' + i E" 3.20 :tf
m .
Gy =6 + iG] A
+* - [] [ ] .
Vm = vm + i vm _
* = v’
VELT T Ve
* o [} 3 "

Where the prime quantities indicate the storage moduli or
storage Poisson's, the double prime quantities indicate
the loss moduli or loss Poisson's ratio, and the i is
defined as J~1. In this research, bulk modulus of epoxy
matrix K is assumed to be real and independent of fre-

quency (15]. For isotropic epoxy matrix,

E

m J3(1 —‘2vm)
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While the viscoelastic behavior of epoxy is considered,

' "
Em+Em

= T 3.23
m J(L -~ 2vm~1ﬂl;T

K

The complex form of v, can be obtained by Equation 3.23

' "
Em+iEm

1 3.24
v!' + vt = = - .
m¥tivg=s 3 - —gpg—)
m
Aftexr separation ¢f the real and imaginary parts of right-
hand side of Equation 3.24, one will have
E"
m 1 3.25
v!' + i vi=v o+ 1 v! - = .
m m m [Eé ( a 2)]

Similarily, the complex form c¢f shear modulus, G;n+ G"m of
viscoelastic matrix can be expressed as functions of Eé,

vﬁ, and E&, i.e.,

E' E' 9K %;

G' + 1 G" = r + 1 m
m m 2ll+v$) 2(I+vé) §Em = Em E;

3.26
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The ccmplex form of Bs/2 of Equation 3.3, as shown in

Appendix B, 1is

GI
s . 4 8’s - Bs , ; Bs (m
2 2 2 4 Gp

EfL) 3.27

fL

The reason that the imaginary part of fiber Poisson's

ratio is set as zero in the last equation of Equation 3.20

is because first, most fibers are known to be anisotropic

materials; therefore,

fibers.

Equation 3.22 is not true for most

Secondly, the corresponding term of E;/Eé for

most fibers (i.e., EE /E%), except Kevlar fiber, is much

less than E"/BE' .
m om

Due to the lack of the ava.lable data

of transverxse damping and shear damping, those two dampings

are assumed to be equal to E"_ /F!

fL' " fL”
It should b. noted that nm and n

£ are treated as

as material preperties, and they are defined as

ER

o EfL
£ Eg,

By using Equations
3-21’

side of Equations 3.20,

=25 and 3.28-3.29,

3.28

3.29

the right-hand

and 3.27 can be rewritten as




E: + 1E* =E' (1l+1n_) =E

fL L £L £ £L,

E'  + i E" =E' (l+1 = E&

gr T Egp £ | ng ) £T

Gl + ] - (] + = G*

err * L CEprT Cepptt t1ong) £LT

. 3.30
E' + 1 E* = E° {(l+1in ) =E
m m n

G' +1i6" =G' (1L+4in =G

m m m Gm m

v! + 1 vt =v' +41in (v - L =

m m m m 2 m

v! = v = v*

£LT £LT £LT

E' + iE"=E"

X X
B's . 4 B"S -BS (1 +3iL(n -n1= B8

2 2 2 2 cm £ 2

where n is defined as

Gm
i 9K _ 5 s

NGm 5K - E, L .

From Equation 3.31, it is observed that ng, 1s higher than
Nme After using Equations 3.20, 3.27, and 3.30, one

can rewrite Equations 3.13 and 3.15-3.17 for viscoelastic

materiai, as follows
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(E. + 1 E;) (Eé + 1 E&)

Ef = R I 3.32
[} - ] [ ] L]
(Ec + 1 Ec) Ty + (l‘::m + Em) 16
1+ 2n; Vf
Ep = (Bp + 1 Ep) - 3.33
l1 - n1 Vf
*
1 +nyV
¥ = (G + i G 2 £ 3.34
LT m m 1 - n*V
2 f
* = v ' e _ 1
vLT (vaT Vf %n ﬁn) + i nm(vm 2)Vm 3.35
where
Eé + i E; = (E%L + 1 EfL)(Vf + va)
tanh(fs/2)
- an S n -
[1 % 1 + {E_ + 1ET ) (V VeR)
B s/2 3.36
tanh(B*s/Z) = tanh(Bs/2)
n n
+18s Gm= Mt 2 3.37
cosh” (Bs/2)
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. Bip+ LER)/(Ey v 4 Ep) -1 s
1 (Ef,r + 1 EfT)/(Em + 1 Em") + 2

] : [ ] L] -
o (GLLT + i GELT)/(Gm + Gm) 1 5 39
2 (GfLT + 1 GELT)Z(Gm + GmT + 1

After substitute Ejf, Ep, Gip » and VfT from Equations
3.32-3.35 for Ey, Eq, Gp, and vpq, respectively, and

Ex+:LEx for Ex into Equation 3.14, one obtains

*
4 4 v
o = 28 S0 1 -2 Icos’e sino
X X Ey, Eq Grr Ep
3.40

Damping of the aligned short-fiber composite along x

direction, ny, is then determined by

Equations 3.40 and 3.41 show that material damping and

stiffness of aligned short~fiber composite are functions
of material properties of fiber (i.e., EEL’ E'f'l" Gf'LT'
Veppe and nf) and matrix (i.e., En;, Vx:\' and nm), fiber

aspect ratio (s/d), fiber volume fraction (Vf), degree of
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discontinuity (R), loading direction (8), and packing
geometry of fiber. If the four different kinds of pre-
packed tapes (glass-epoxy, Kevlar-epoxy, graphite~epoxy,
and boron-epoxy) are used to make the fiber composite, the
design variables utilized to analyze the stiffness and
material damping are s/d, @, R, V., E; ({EEL' Efpr Ggppe

VELT ¢ \)% ' “m})' and Em ({I{\{I \ﬁ;, n }), i.e.

E; = £, (E;, Eg. s/d, ©, R, Vg 3.42
n, = £, (Ec, E, s/d, 8, R, V) 3.43

A similar approach can be applied to determine damping

along y direction, Ny s and stiffness alonyg y direction, K

Ey.




CHAPTER 4
DAMPING OF RANDOMLY ORIENTED SHORT-FIBER COMPOSITES

4.1 Introduction

The objective of this chapter is to determine
analytically the material damping of in-plane randomly
oriented short-fiber composites. The analysis is
carried out by using the extension of the short-fiber com-
posite model and part of the results obtained in
Chapter 3. An averaging procedure is first applied to
the six off-axis reduced stiffnesses Qij (1, 3 =1, 2, 6)
with respect to the angle © between the fiber orienta-
tion and the applied load. The results of integration
show that in-plane randomly oriented fiber composites
behave like a planar isotropic material. By using the
properties of isotropic materials, Young's and shear
moduli can be obtained as functions of the reduced
stiffnesses Qij (1, j =1, 2, 6). After the application
Of the elastic-viscoelastic correspondence principle and
separation of the real and imaginary parts of the complex

Young's and shear moduli, material damping is obtained.

40
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4.2 Damping Analysis of In-Plane Randomly Oriented
Short-Fiber Composites

For in-plane randomly oriented short-fiber compo-
sites, no difference caused by different direction paral-
lel to the planes on which fibers are laid. The averaging
procedure i »>ne of the approaches which will lead to the
isotrop. Therefore, an averaging by integrating the six
moduli of off-axis short-fiber composites with respect to
@ from 6=0 to 0=n should be used, However, from Equation
3.14 for E, and similar Equations for Ey, ny, Vxyr By and
my 138], one finds that it is not convenient to integrate
and obtain the average Ex in closed form in terms of
E;. Eq, Gpgqe and VLT Instead of integrating the six
engineering moduli, one can integrate the six components
of the off-axis reduced stiffness of the plane stress

case'ﬁij (i, 3 =1, 2, 6) and obtain the average

613" ioe.

n
- 1 - .
j =3 f Q13 40 tr3=1.2,6 4.1

The expression for'ﬁij (i, 3 =1, 2, 6) as a function of ©
can be found in reference [38]. After integrating with

respect to 6 from 9=0 to O=n and then dividing each of the

result by w, one obtains
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01y = p2 = % (Qqp + Q22) + % (2Qg¢ + Q12) 4.2
0O & l 4.3
Qg6 = § (Qu1 *+ Q2) = 7 Q2 * 3 Q66 .
~ 3 1

Q12 = 8 (Qll + sz) + ry Q2 = 3 Q66 4.4
616 = 566 =0 4.5

It is easy to show from Equations 4.2-4.4 that the follow-

ing relation exists
Q12 + 2Q66 = Q1 4.6

Therefore, after integration, there are only two inde-

pendent material constants, namely,'br and'ér.

g, = 0 4.7

L]
2]
!
Lo’
P
-

This implies, as expected, that in-plane randomly oriented
short-fiber composites behave as planar isotropic mate-
rials wi h two independent material constants. The

subscript r represents irandomiy oriented short-fiber

composites,

P S O O S O T o W W, S W ¥ S W O e O A O O e T o O O O O T O e o O e O W T TR R W T W N R~ 7 S W (Wl KW, V. Y, L NVe B W G0 VT, o S WU SN TN R WL~ SN R RS WL I e
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For isotropic materials, the following relations

exist
1l-v
G, = Er — 4.10
2(L + v)

where v is defined by 612/611. Elimination of v from

Equations 4.9 and 4.10 yields the expression for

~

E the Young's modulus of a randomly oriented short-

r’

fiber composite as a function of Er and‘br.

[
i
e
(2]
0N

Substitution of Equations 4.2, 4.2, 4.7, and 4.8 in Equa-~

tion 4.11 yields Er as a function of the four reduced

stiffness Qll’ Q22, le, and QGG'

E = [% (Q; + Q22) = Q17 + 2Q¢¢!

Q * O = 291 * 406 i
3(Q 1 + Q) + ¢ Q5 * 2Q4¢! R4

Similarly,




44
_ 1 1 1
G, =g (Qp1 + Q23) - 3Q12 + 5%%6 4.13

Since Q31, Qp3, Qs &Nd Qgg are directly related to the
four basic engineering constants Ej, Eq, Sppr and vig

(defined in Equations 3.13, 3.15, 3.16, and 3.17), accord-

} ~

] ing to Equations 4.12 and 4.13, E and'br can be expressed

r
as functions of EL' ET' GLT' and VLT-

Next, as in Section 3.2.2 for aligned short-fiber conm-
! posites, according to the elastic-viscoelastic correspond-

~

ence principle, one may replace E. by Ex = + 4 B}, G,
by 8¢ =G%+ iGQ’ , E by E , Ep by Ef ,

v by vip where E{ , E} + Gfp , and v{p , are defined in

E}
¢ by Gir .

W T F e e b W A

Equations 3.32-3.35. Atter separation of the real and
imaginary parts, the material damping constants n, and ng,

of in-plane randomly oriented short-fiber composites can

' WS E A S SETe—

be obtained.

t
o
N3
>
‘-—O
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(2]
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CHAPTER 5
DAMPING OF LAMINATED FIBER COMPOSITES--
LAMINATED PLATE THEORY APPROACH

5.1 Introduction

In this study, laminated plate theory and an energy
approach are used to analyze the materjal damping and
stiffness of symmetrically laminated fiber composites. 1In
this chapter, we will discuss all analytical work of
laminated plate theory approach, while in Chapter 6 the
energy approach will be presented.

According to laminated plate theory, the constitutive
equations (Equation 5.1) have already been given in refer-
ences {38, 50), in terms of [A], [B], and [D] (i.e. [A]}%*,
[B]*, and [D]*) matrices., Material damping of laminated

composites can then be dzrived from the expression of [a],

(8], and [D].

5.2 Damping Analysis of Laminated Fiber Composites
Through Laminated Plate Theory Approach

For a laminated fiber composite plate, as in Figure

5.1, the constitutive equations are given in references (38,

-
s

50] as shown in Equation 5.1.

Lab et el
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Figure 5.1: Sketch of Laminated Fiber Composite Plate
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€S,
Y
X’ ky and kxy are plate curvatures defined in (38, S50],

In Equation 5.1, €2

X! and Yiy are middle plane strains,

k
and Aij' Bij' and Dij (1, 3 =1, 2, 6) are the equivalent
reduced in~plane stiffness, coupling stiffness and

reduced flexure stiffness, respectively. They are expressed

in terms of aij and total thickness of the plate, h, as

follows:
h/2 _ n o _
Az = Q;s dz = I (Qis)y (hy=h__4)
ij 1] kel 3Tk Tk k-l 5.2a
-h/2
= 2 Qs dz = I =%(Q;4)r (hé-hZ_;)
B4 13 ey 2 23Tk TRTR1T o o)
-h/2
Dij = 2 Qij dz k.}-i]_ 3(Qij)k (hk hk"l)
~h/2 <
.2¢C
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where aij can be expressed in vector form [50]

Q)3 Uy Lp) Uy ) ( L]
Qa3 Uy =U; Uy
612 U, 0 -U; cos 2 ©
< ? = p r
Q6 Ug 0 ~U3
- 1 .
Q16 0 292 U3
_ 1
LQ26 0 EUZ ‘U3 cos 4 ©
" 5.3
and
U; (i=1, 2. .5) are defined in [50] as
1
Up =5 (30p3 + 3Qz; + 20)5 + 4Qg¢)
1
U, = ‘é (4011 - 4Q22)
1 B
Uy = 5 (Qq1 + Q23 - 2033 = 4Q¢6) 5.4 .
— l B
Ug = 5 (Qq1 + Q3 + 6033 = 40g¢)
Us = = (Qll + Q22 - 2Q12 + 4056) .
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Qij (i, =1, 2, 6) are known to be, by references (38,

501,
E
Q. = L
Q. = Er
5.5
o = _LrEr
12 l"VLT \)'I\L

Q6 = GLT

ané
v E )
v = LT ®T 5.6

TL Ey,

where Ey+ Eqs Gpqo and Vi are defined in Equations 3.13,
3.15-3.17. 1Interesting relations should be noted that

Q45 (4, 3 =1, 2, 6) of Equation 5.3 will be equal to Q
of Equations 4.2-4.5, providing U, and U3y are set as zero.

Equation 5.1 can be rewritten in matrix form as

[N A B €’
= 507 [t
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For symmetric laminates, the coupling stiffness matrix B

is a zero matrix, and Equations 5.1 and 5.7 can be

uncoupled as

Ny A1 Ay A6 |Ex
JNy = M2 Pz Ml Yy f
‘ny ‘A16 Azg AGGJ LY;yj
or
{n} = (al {e°}
and
M, D13 Diz  Di¢] [kx ]
My ¢ = [P12 D2z Dag| yky ¢
Mxy _D16 D¢ DG6J kxy‘
or
(M} = (o) {k}

From Equation 5.8a and the definition of Aijf one can

exprecs in-plane moduli Eij (i, 3 =1, 2, 6) as

5.8a

508b

5.%9a

5.9
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where h is the total thickness of laminated composite and

AI% are the elements of the inverse of matarix [Aij]' and
AI% are determined by the following system of equations.

(-1 =1 ~1731 ) ]

Al P12 A Al M2 B (10 0
-1 -1 -1

Al A22  Ryg Ala B2 Bg| =0 1 0O
-1 -1 -1

[R16 A26 Age [P16 P26 Pes (00 1]

5.11

According to elastic-viscoelastic correspondence
principle, when the viscoelastic behaviors of fiber
composites are considered the elastic material constants
Er» Eq, Gppr and vyp (defined in Equations 3.13, 3.15-3.17)
should be replaced by the corresponding complex moduli,
respectively. Consequently, the complex form of Equations

5.8 and 5.9 can be written as

r L r * * * N 4 o -
Ny Ay A1p Ajgl |
J * * * *
Ny r = Alz AZZ A26 4 €y° ? 5.12a
* * * * N
| Mxy (A1 A6 Peg) |Yxy)
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* *
N} = (a1 {e°} 5.12b
¢ kN . * * )
My D11 D1z Dis [kx
* * * * 1
{My N = IDj; Dy Dy iky S 5.13a
* * ® *
L Mxy | P16 D26 Deé | lkxy
/ .
or
* *
M} = (0] {k} 5.13b

The corresponding complex form of in-plane complex moduli

E.. can be exnresgsed asg
1] &
* 1 I —_— 5.14
(*13)
* =1
where (Aij) is the element in the ith row and jth column

of the inverse of matrix [A;j]'
The in-plane material damping IN4j and f.vaure

material damping FNij are definred as follows:

n o= —oii i,
I1j E .
1]




S3

n

N o= —24d 1, 3=1,2,6 .16

For the same kind of fiber composite, the resuit

sbtained by Equation 5.15 for sixteen plies of unidirec-
tional laminated composite is same as that obtained by
Equation 3.41 for laminar composite with the same
off-axis angle €. This indicat.s that the approach
presented in this chapter is correct, although it may not

be convenient because the inverse of a complex matrix is

involved.




CHAPTER 6
DAMPING OF LAMINATED FIBER COMPOSITES--ENERGY APPROACH

6.1 Introduction

The drawback of damping analysis using laminated
plate theory approach is that it does not include the
effect cf interlaminar stresses (the stresses at the
interfaces of laminated composites). It has been shown in
study [54] that even when an in-plane uniform tension lcad
is applied to the laminated composites, there do exist
appreciable interlaminar stresses around the free edges.

In this chapter, an energy approach in conjunction
with a three~dimensional finite-element method [55, S56] is
used to analyze the material damping under certain loading
and boundary conditions. It is believed that this model
represents a more realistic approach by including the
enerqgy dissipated at the interfaces. By using this
approach, we improve the approach from a two-dimensional,

classical, laminated plate theory to a three-dimensional

elasticity theory.
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6.2 Damp..g Analysis of Lamincted Fiber Composites
Through Energy Approach

The damping of laminated materials in the first mode

vibration is determined as

n
)

I %) oy

n
Z 2n U
g=t 1°

where n is the total number of the plies, (qUD)cyc is the

energy dissipated in the qth layer during a cycle, and qU

is the maximum strain energy stored in the gth layer.

cyc and qu are given in

Appendix A in which the energy expressions for a visco-

Detailed expressions of (qUD)

elastic material given in reference [57] are used.
The analytical expression of the maximum strain
energy Ug for an elastic body is

- 1 .
US = ‘2' Ej CJk Ek dv

where €y are the maximum strains, and Cjk are the moduli
of the elastic body.

The expressions of Cjk (j, k=1, 2 .. . 6) for
orthotropic elastic material are given by Jones [581];

here k and j axes are material principal axes. In this

study, each layer of fiker composite is considered to be
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transversely isotropic material. Therefore, as presented
in Appendix B.l, the moduli of mth layer fiber composite

could be defined as functions

C5k)m = £ (B, + Ep v Gpp v Vi + Vrotim 6.3
where EL ¢+ Eqp 4 Gpp and Vi are given in Section 3.1 for
short-fiber composites, and Vs is assumed equal to Ve
An analytical expression for v,,. is available in the
literature [38], but the assumption that vgqpe = v, is
believed to be accurate enough in our analysis. According
to the elastic-viscoelastic correspondence principle, when

the viscoelastic behaviors of the body ave considered, Er,

* *x *x *
Epe Gppr Vyppe Voge should be replaced by Eps Egsy Gpoe Vppe
x®
and vTT" respectively. For example,
c. = Ve Bp _ 6.4
12 I - VTL \)LT
changes irnto
[ ] [ ] 1 on
O+ 1Vt (FLo+ s o) 6.5
2 - ¥ T T Lavad ¢ -
12 1 (VTL + lVTL) (\LT + lVLT)
or
* N4 -

e N L AMMAATNT - T PR o NI R DO A A S/ A b LN L B3 L L A TR LA U T Y et Ay ey el
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After separating the real and imaginary parts and using
matrix rotation (if cthe material principal axes do not
coincide with the global axes), the complex moduli C*
with respect to the global axes (i.e., x, y, and z axes)
of the kth layer of fiber composites are then obtained in

the form
—* -, — s
(c ]k = [C ]k + i IC-]k 6.7 L

where C' are storage moduli, and C" are loss moduli. All
three matrices are symmetric matrices.

The storage energy . Ug and the dissipated energy

q

cycle (_U_) in the gth laver of laminated

Aurinag !
2 ‘g-scyc — - T

[ .

1 ,
qVs = 3 J €5 cjk fx 9V 6.8

and

(qUD)CYC =T ’— Cj C;k Ck dv 6.9

correspondingly. Consequently, the material damping of

a n layers laminated composite in the first mode vibration
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S 6.10

where strain field {e} depends on the loading and boundary
conditions, and the strain field would be determined in
this study through a three-dimensional finite element
method.
From Equation 6.10, one may thus arrive that even a {}
highly dissipative modulus cannot contribute significantly
to the total loss factor n, if it's associated strain (or
stress) does not participate considerably in the total
stored energy.
The procedures taken in energy approach are briefly

described as follows:

Step 1:

As in the laminated theory approach, the elastic
solution is first sought in energy approach. The
equation of motion of an elastic body in static case can
be derived from the principle of stationary potential

energy given in reference [59].

§(U-Wg) = 0 6.11

where U and W, are the strain energy and the worlk done by

external forces, respectively.
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Step 2:

After the assumed displacement function {(as a
function of nodal displacement q) is substituted into
Equation 6.11, the equations of motion can be expressed as

a system of equations (details are given in Appendix B.2).

(k1 {q; = {f} 6.12

where [k] is the stiffness matrix, and {f} is the nodal
forces.
Step 3:

After the displacement field is determined by sub-
stituting the solution of Equation 6.12 into the assumed
displacement function, the strain field {e¢} of the elastic
body could be obtained through displacement-strain
relations.

Step 4:

Once the strain field of an elastic hody is known, the
material damping of a viscoelastic body under the same
loading and boundary conditions can be determined by
Equation 6.10.

In general, we can apply either uniform normal and

uniform shear forces (N, Ny, or N ) at edges x (or y)

Y
constant or appiy uniform normal and uniform twisting
moments at x (or y) = constant. In the former caseg, we

obtain in-plane normal and shear damping (yny;, ynNggls:

and in the latter cases, we obtain flexural normal and
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twisting damping (pNy)s pfgg!. Only the case of uniform
N, applied at x = constant will be presented for

different symmetric cross-ply laminates in Chapter 9.

Othex loading conditions can also be accommodated in this

approach.

T S

g
g
;
g
j
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CHAPTER 7
EXPERIMENTAL MEASUREMENT OF DAMPING

7.1 Introduction

Free vibration decay [9], band-width method [9],
resonant-dwell method [60], forced-vibration technigues
[61], and impulse techniques [62, 63, 64] are the very
popular experimental techniques used to measure the
material damping. All of these tests are subject to the

air drag [65, 66), if the tests are not conducted under a

an improved impulse

vacuum condition. mpu
technique approach [64] is utilized to measure the
material damping.

The impulse technique consists of the application of
a force pulse at a point on the test structure and the
measurement of the response at another point. The input
force and response signal are digitally processed by the
analyzer to form the frequency response function or
transfer function. Damping and natural frequencies
can ther be extracted from the ocutput of the analyzer.
Ali measures are performed using a digital signal process-
ing technique., It involves filtering and sampling the
input wave forms. The sampling process converts a
voltage (at a certain point in time) into a numerical
representation,

6l
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These numbers are then processed digitally to ﬂl
produce the various calculations performed by the .
analyzer. The primary output from the Fourier analyzer
is the frequency response function, which is a measure of
systen'’s characteristics. The analyzer also calculates
the coherence function, which ranges from 0.0 to 1l.0. The
larger the potential measurement noise or the system non-
linearity, the lower the coherence function will be [67].

A coherence value of unity indicates that the output is
completely related to the input. Thus, the coherence
function used here is a measure of the "quality" of the

data.

1.2 Apparatus

The composite plates or beams are fixed by two alumi-
num blocks at one end. A non-contact probe (KD-2310-3U,
Kaman Science Corporation, Colorado Springs, Colorado),
known as a motion transducer, is located about 1.5 mm
below the tip of each specimen. This motion transducer
operates under the principle of eddy current. An aluminum
foil taruet of diameter 20 mm is cemented underneath the
tip of the specimen. A force transducer is mounted to the
head of the impulse hammer (Model K291lA, Piezotronics,
Inc., New York), to measuxre the force input to the speci-
men. The other tipof the hammer is connected to the

fixed spring so that the magnitude, locaticn, and the

dwelling time of the impact load can be controlled. To
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improve the coherence, an octave filter (4302 dual 24db,
Ithaco, Inc., Kew York), which is connected to the force
transducer at the hammer tip on one end and to the Fast
Fourier Analyzer (FTT, Model 5420, Hewlett Packard) on the
other end, is used to magnify the input signal 100 times.
The impact point is near the stiffer portion of the speci-
men. The excitation and response signals are fed into the
FFT analyzer, which displays the frequency response func-
tion and coherence function. Each frequency response and
each coherence frunction are based on a statistical analy-
sis of an ensemble of 3ix tests. A schematic drawing cf
the experimental set-up is shown in Figure 7.1l.

The frequency response function is a complex valued
function. A typical experimental display of the real and
imaginary parts of the frequency response function for a
graphite~epoxy composite, according to reference [64]), is
shown in Figure 7.2 and an enlaryged schematic drawing of
real part of frequency response function is shown in
Figure 7.3. As prescribed in references (62, 63, 64], the
prak of the imaginary part deteimines the resonant fre-
quency, and then from the correspondiny real part (see
Figure 7.3) the material damrping (loss factcr, n) can be

calculated by

2
o £/ 5)%- 1 7.1

(£,/£) %% 1
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In using the impulse technique to measuxe the mate-

rial damping, following precautions, as reported in study

{64], must be taken.

1, In order to improve the accuracy of experimental data
of damping associated with a particular mode of
vibration, the values of natural freguency within the
frequency range of interest (say 0 to 1,600 Hz) are
first approximately determined. Then a zooming
technique to increase the resolution of the response
in the neighborhood of this particular frequency is zf}
used.

2. It is necessary to avoid measurement of response near
a nodal point for the modes to be tested. Such meas-
urements would consist primarily of noise, since the
actural response is very small near nodal points.

3. The amplitude of the vibration must be kept below the
thickness of the specimen to ensure that air damping
(air drag) is negligible, since the air damping is
linearly proportional to the amplitude-to-thickness
ratic of the beam specimen [63].

4. It is important to optimize the Analog to Digital :RV
Converter (ADC) range setting on an FFT analyzer QJ&
before making a measurement, since an optimized ADC
range set will increase resolution in the digitizing
process [35]. >i;

Recently, Suarez and Gibson [35, 36], did some

experiments on material damping of short-fiber cocmposite
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through impulse hammer technique. Some of those experi-
mental results for unidirectional short-fiber composites

presented in this chapter are compared with the analytical

results.
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CHAPTER 8
OPTIMIZATION OF DAMPING AND SPECIFIC STIFFNESS
FOR FIBER COMPOSITES

8.1 Introduction

Plunkett and Lee [19] pointed out that maximum damp-
ing can be cbtained through properly choosing the length
and spacing of the constraining layers. Those layers are
used to constrain the viscoelastic layer (or coating) on
the structure surface. In the study presented here, the
optimization of damping is bascd on the composite material
itself (i.e., choosing the proper fiber length, fiber
direction, the longitudinal distance between fiber tips,
etc.). It is known that high damping can reduce the
displacement at and near the resonant frequencies, while
high stiffness can further reduce the displacement at
other frequencies. The best way to optimize beth damping
anc stiffness is to keep them as high as possible. Unfor-
tunately, there exists a general trend that higher damping
is mostly coupled with low stiffness and vice versa.
Therefore, the idea of the optimization in this study is
te try to increase damping without sacrificing the
stiffness too much.

From the formulations presented in previous chap-

ters, one can see the complication contained in damping

69
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analysis. It will be a simplier approach for the optimi-
zation analysis if no derivative is needed. Consequently.
the so-called Sequential Simplex Method [68, 69] has been

selected %0 analyze the optimictation.

8.2 Brief Introduction to fequential Simovlex Method

The sequential Simplex Method [68, €9] takes a regu-
lar geometric figure (krnown as a simplex) 2s a base.

Thus, in two dimensicns (i.~,, two-design variables), one

should choose an equilateral triangle; and in three dimen-~
sions (i.e., three-design variakles), one should choose a

tetrahedron.

Ohsarvations f{expneriments) are located so that the
objective functior is evaluated at the points formed by
vertices of the geometric fiqure. ©One vertex is thken
re - “ed as being inferior in vaiue to the o*hers. The

val direction of search mav then be takenin a dire:-

.oy from this worst point, the direction being
ci* ,-+ 380 that the movement passcs through the center of
gravity of the remaining points. A new pnint is then
selected alony this direction so as to preserve the geome-
txic shape ~f the figure, znd the functicn ic evaluated
anew at tais point. The methed proceeds with this process
of vertex rejection and regenevatior until the figure
straddles the optimum. When no subsequent moves would

lead to further improvement, the last few geometric

figures are essentially repeated. <There are three rules

Y
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that govern the whole procedure of this method. These

rules are explained in the two-dimensional case as

fcllows:

1. Take the point to be rejected where the worst value
of the cbjective function is obtained, and replece it
by its reflection in the opposite side of the tri-
angle. See Figure 8.1, where point B is replaced by
point D.

2. No return can be made to roints which have just been
left; see Figure 8.2, where point A is replaced by
point D. If point D is still the wcrst point of

triangle BCD, then point B is replaced by point E.

3. If th

1
(o

est valued vertex remains unchanged for more
than M iterations, then the simplex size is reduced
by, for example, halving the distance of all cother
vertices from that vertex. The next stage can then
stac-t. For example, as in Figure 8.3, point C is
sequentially repeated in five triangles ABC, BDC,

DEC, EFC, and FGC; and after the size cof the fifth

~

triangle FGC 1is reduced to triangle F'G'C, the ru’-
is applied at the new triangel F'G'C.
The magnitude of M depends on the number of

variables. Spendley [68] suggested that

M=1.65n + 0.05 n? 8.1
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where n is the total number of design variables. The
search can finally be stopped when the simplex is small
enough to loccate the optimum adequately.

It should be noted that Rule 1 and Rule 2 force the
simplexes to c¢ircle continuously about an indicated opti-
mum, rather than oscillate over 4 1imited range such as a
ridce (see Fiqure 8.2). If one enstures that at any point
violating a constraint, a sufficiently large negative
value {or positive value, if one is maximizing) is set for
the response at such a point, the system of simplexes will
then move along rather than cross the constraints.

The advantages of this method are as follows:

1. It is easy to apply.

2. It is useful when analytical or numerical
derivatives of the objective function are not
available.

The disadvantage of this methed is that it could not

guarantee that the global optimum design is obtained.
The_efore, several different initial locations (designs)

should be considered to get global optimization.
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31

Figure 8.1: Rule 1 of Sequential Simplex me thod

X1

Figure 8.2: Rule 2 of Sequential Simplex method
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Figure 8.3: Rule 3 of Sequential Simplex method

§.3 Mathematical! Formulation of Deiign Problems

Energy approach and laminated plate theory approach
are both utilized in damping analysis. The main advantage
of the energy approach over the laminated plate theory
approach 1s that the interlaminar stresses are included,
The disadvantage of the energy approach is that it takes
much more computer time than the laminated plate theory
approach does. The influence of interlaminar stresses
can be neglected, if the thickness of each qroup of lami-
nated composite is thin {a detailed discussion is given
in Section 9.5). Then laminated plate theory approach

for damping analysis is a good way for the optimjzation

anaiysis for thin structures.
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Generally speaking, the design variables of continu-
ous or discontinuous fiber composites include fiber volume
fraction V¢, fiber modull Eg, fiber aspect ratioc s/d, the
longitudinal distance between fiber tips p, and fiber
orientation angle 6 for certain special stacking sequence.
Among those six variables, only fiber aspect ratio s/d and
fiber tip longitudinal distance p are treated as the
design variables in the optimization analiysis. Since
orthotropic materials are utilized in the optimization
analysis, the fiber direction © is kept as certain con-
stants. The fiber volume fraction is also set as a
constant (0.65) in this study, since the fiber composites
are made from prepreg tape. Stacking sequence is fixed
and most of this study is concentrated on graphite-epoxy,
Kevlar-epoxy and the hybrid of those two composite
materials, so that only two sets of fiber moduli are
considered.

Two different cases are considered in optimization
analysis:

Case one is to optimize the specific stiffness and
material damping of an orthotropic square plate simply
supported on ail four sides under free vibration.

The equation of motion for this case is

Dll W + 2(012 + 2066) W + Dzzw

Lyyyy = PY, et
8.2

. XXXX e XXYY
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where the Dij are derived from laminated plate theory, and

W is the flexural deforwmation. Let
W=2a, Fn {x) Hn (y) T(t) 8.3

By separation of variables, the form (8.4) is obtained for

T(t): while Fp (x) and H, (y) satisfy Equation 8.5

T(e) =e (L 5% ¢ k=1,2,3....
P 8.4
Dll Fm (iV)Hn + Z(Dlz + 2066) F!"GH;\ + D22 Fer(liV)
= A F.H
k*mn 8.5

where Xk is the constant to be determined, and i is l-l
in Equation 8.4.
In accordance with the simple supoort bcundary

conditions, Fm and Hy functions can be assumed as

nny
3 8.6

F(x) = sin
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where a and b are the lengths of the edges along x and ¥y
directions, respectively.
By substitutiny Equations 8.6 and 8.7 into Equation

8.5, one obtains

4 4 m2n2ﬂ4 n4“4

mrwn
2 a'h b 8.8

Letting b=a for a square plate and considering ornly
the first mode of vibration {i.e., m=n=1), one can

obtain Al as

>
.d
i
.
]
[
’—‘
+
Ny
Ty
9]
4
s
=t}
[~}
[+
+
[t
[ %)
8
——
o
L ]
€

The natural circular frequency of the first mode, w;, 1is

defined as

w = D)t 8.10

Then the first mode solution of Equation 8.2 is

i.
W = a; sin 2-5- sin 1Y w1t 8.11

a




,.h.’-— -
aa

"
w’

nr.
.

"

i 2 N
Tel.

T PR

CASRES

-
i

. e

If the viscoelastic behavior of the materials is

considered, the complex form of Dij should be included,

LI | 1 * * * * .k
w ==, 3 (Dy, + 2D,, + 4D + DZZ)

After separating the real and imaginary parts and
neglecting the higher-order terms of the binomial
expansion of the quantity on the right~hand side in

Equation 8.12, the following expression is c¢bhtained.

where
2 1 X
[ ] - L [ [} L} L}
W, = -;7 -5 (Dll + 2D12 + 4066 + D22)
e o2 Dy, + 2D}, + 4D7, + D3,
1 2a1 k

] ] t i ]
PDyy *+ 2035 + 4Dge + D3)

8.12

8.13

8.14

Hence, for viscoelastic materjal, Equation 8.11 should be

rewritten as
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Ty eiwit

o 4 ) e-w1t 8.16

X
W= (aj; sin T sin

Equation 8.16 is similar to the mathematical model of

logarithmic decrement {42], and the logarithmic decrement

§ can be approximated by

w”
1
2n EJ-I wi
) B e % 2m - 8.17
R 1,2 1
F S \Er-)
1

for light damping, i.e. when wj/wj < <l.

~ -—

By using Equation 2.22, the loss factor of this

system is then determined as

s Dy, * 2Dy *+ 4Dgg * Dpj
= - - 1 Y Y
wl ﬁil 1-2D12 + 4066 ¥ D22

8.18

The value of A, depends on the stiffness, High
stiffness reduces the deflection at resonance; the
material damping can further reduce the displacement at
resonance. Gibson [61] shows that flexural vibration for
a double cantilever beam under forced vibration at
resonant frequency depends inversely on the product of
material damping, area moment of inertia of cross section
and Young's modulus., It should be noted that his result

is based on the equationof motion for free vibration and
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the boundary conditions of forced vibration. For the case
considered here, the product of the area moment of inertia
and Young's modulus corresponds to the generalized

stiffness 5, which is defined as

£" =0'+ i D" 8.19

S'= D' + 2D}, + dDL . + D3, 8.20

B = D], + 2Df, + 4Dg, + D3, 8.21
Equation 8.18 can be rewritten as

n = b"/D° 8.22

In order to have small resonant deformation, a high
value of the product of stiffness and material damping is
required. But high specific stiffness is the major pro-
perty of fiber composites to be widely used in space
vehicle and aircraft. Therefore, the mathematical formu-
lation of optimization on damping and specific stififness

is to seek the maximum value of the objective function

£, (p/d, s/d) 8.23
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of two variables p/d and s/d, wherc fl is assumed in the form

p i}
——— ————— - n
F (p/d, s/ = Ty —Rms T, —2
1 1 5' 2 'ﬁ'l
° ° 8.24
PO o0 )
ar
£ (p/dy s/d) = 0o 2 (1 T, <) 8.25
p/d, s/d) = — —— + .
1 o g, 1t ey

The ranges for design variables p/d and s/d are

0 ¢ p/d < 0.05 s/d 8

[
[2,}

25 ¢ s/d < 10000 8.27

Where T1 and T2 are wieghting constants, " is the damping value of
epoxy, p is the density of designed composite, b and n

and n of design composite are defined in equations 8.20 and 8.22,
respectively, and Dy and pg are the corresponding values of 011 and
density of unidirectional continucus graphite reinforced epoxy having

the same thickness and fiber volume fraction., If high speci“ic stiffness

is important in structures, T1 could be chosen as a high value.
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Alternatively, if small resonant deformation is the major

consideration, T, should be a high vailue.

Case two is to optimize the specific stiffness and

material damping of an orthotropic square plate clamped on

all four sides under free vibration.

The equation of motion is just the same as Equation

8.2. The first mode solution is assumed, according

to reference [70]

W=2,; F(x) H(y} T(t) 8.28

where

F(x) By cos A;x = By cosh A\jx + sin M\)x - sinh Alx

8.29

H(y) By cos Ay - 8 cosh Aly + sin Ay - sinh Ayy

8.30

sin Ala - sinh xla

By = cos Ala ¥ cosh‘lla 8.31

and ll is the constant to be determined.

The natural frequency of first mode vibration of a

clamped square plate was given in reference [70] as

%
[5014D11 + 1055(2022 + 4066) + 5.14022]

]
mhjdw

by
8.32




T e T TR T T TR TR A T W AW e T -y = SRR TN TR e s TRV AWM AW TSOFSaTARAE YT N

83

Py a similar approach to that prescribed in case one, one .

will obtain the loss factor of the system for case two as

5.14DI1 + 1.55 (ZDi2+ 4Dg6) + 5.14052

n =  § B 8.33
5.1¢D{i + 1.55 (2012+ 40237 + S.IEDZZ

The mathematical formulation of optimization for this
case is to seek the maximum value of the objective

function

of two variables p/d and s/d, where f, is defined in ,
Equation 8.37 7 ;i

The ranges of design variables are

0 s p/d 5§ 0.05 s/d 8.35
25 § s/4d $ 10000 8.36 R
where
El ‘bl
e —_— . 0N
£, (py, s/d) =Ty —2— 7y 8
D, D
P 5. * 'm

and
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) + 5.14DJ

+ 1.55(2Dy, + 4D 22

11

(o]}
f

D" = 5.14D!

11 + 1.55(2D%, + 4066) + 5.14022

12

8.38

8.39

8.40
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CHAPTER 9
RESULTS AND CONCLUSIONS

9,1 Preliminary Remarks

The damping analyses presented in Chapters 3 to 6 are
applicable to all kinds of fiber composites, including
continuous fiber composites, discontinuous fiber compo-
sites, symmetrically or unsymmetrically laminated or lami-
nar composites, randomly oriented fiber composites, etc.
The optimization analysis on damping and specific stiff-
ress presented in Chapter 8 is based on orthotropic
material. However, a similar approach is applicable for
more general anisotropic materials. Since most widely-
and practically-used fiber composites are symmetrically
laminated fiber composites, the numerical analysis of
this study is concentrated on certain kinds of symmetri-
cally laminated fiber composites, unidirectional laminar
composites, and in-plane randomly oriented short-fiber
composites,

As mentioned before (see Chapters 3 and 5), damping
ny is defined as E}/E} (or Dy/Dy). Since both E; and Eg
(or Dy and D;) are functions of Eeo Epy s/d, 6, P (the
longitudinal distance between fiber tips), V¢ and ng, etc.,
the variations of n, and E, (or Dy) may not follew the
same pattern. Consequently, in the numerical results,

85
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r

three dependent variables (i.e., n}, Ey, and Ey) are dis-
cussed in laminar composites, while more dependent
variables are involved in other composites. Among the
independent variables, most interest is focused cn E¢, Eqn
s/d, and 6. P is treated as an independeat variable only
for optimization, and Ve is set as aconstant in most
cases,
The numerical results presented in this chapter are
based on the fcllowing assumptions:
1. The matrix epoxy behaves as a linear, isotropic,
viscoelastic material [15].
2, All fibers are also linear viscoelastic materials, and
damping of fibers is independent of direction.
3. The dependence of modulus on frequency is not

considexed at the present time.

9.2 Damping and Stiffness of ULnidirectional
Fiber Composites

The numerical results of damping and stiffness analy-
sis presented in Chapter 3 are discussed in this saction.
It should ke noted that the modified Cox's model
(i.e. Equations 3.8 and 3.13) is used tc calculate the
longitudinal modulus of composite materials.

Figures 9.1, 9.2, and 9.3 present the nondimensional

plots of E)'(/E;n, E"x /&"

mer and ny/n, cf graphite 2poxy

composite as functions of fiber aspect ratio s/d, using 0
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X i
*‘?{I (the angle bhetween fiber direction and lecading direction} |
h as parawmeter. For small angle, say ©0<10°, the storage /
:.\.-":' |
;R;j modulus sharply increases as fiber aspect ratico increases;

nr

2

tx.:. the loss modulus reaches its maximum around s/d=130 aud

‘..'

g then reduces as s/d increases, while damping apparently

A decreases as s/d increases. Comparing 0° curves with the

30° curves in those drawings, one can notice that when

0=0° 1ow damping at large s/d is caused mainly by high

storage modulus. Comparing the 60° curves with the 90"

>

&,
r
r

.1&

curves in those drawings, it is recognized that for large

angles, the differences in loss moduli have more influence

~

2:2 on damping. Alternatively, Figures 9.4, 9.5, and 9.6 show
.E\j the nondimensional plots of };; /):;.:l + B} /lE:'I'n , and nx/“m of
s graphite epoxy composites as functions of 0, using s/d as
x parameter. It is clearly observed that tl.. shorter the
{ fiber, the stronger is the dependence of E;c/Er'n . E;/Er‘ﬁ !

and n./ng on s/d for small angles, say 0<10. When 0245,

.
A AT

fi there is not any change of E//E; , EJ/E} , and n,/np

::-Cj caused by changing s/d. In addition, Figure 9.5 shows

?ii that the maximum value of EZ//E; occurred between 0=C°

k:\ and 0=15° for fiber aspect ratio ranging from 25 to 10000.
“ Similar properties of unidirectional bcron epoxy

:;é_ composite and glass epoxy composites are observed. But,
:r( for 0=0, the maximum values of }:'.‘;‘(/El"'1 occur around s/d=500
{** and s/d=50 for boron epoxy composite and glass epoxy

g composite, resp:ctively. Also, the damping of boron epoxy

composite is, in general, higher than that of graphite
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€poxXy composite. This is because boron itself has higher
damping than graphite does.

The corresponding drawings of Figures 9.1, 9.2, and 9.3
for unidirectional Kevlar epoxy composite are given in
Figares 9.7, 9.8, and 9.9, respectively. It i35 observed
that Keviar epoxy composite has the highest material damp-
ing among those four kinds of composite. This is due to
the fact that Kevlar (aramid) is a kind of polymer which
ustxlly has high damping. It is interesting to notice
that Eg /E;lof Kevlar epoxy composite monotonically
increases with respect to s/d when 9=0°., All other proper-
ties of Kevlar epoxy composite are similar to those of
graphite epoxy composite.

Figure 9.10 presenis the plots of EL/Eq, E;/E&, and
ne/Nn of Kevlar epoxy composite as functions of 0 with
s/d=100. This figure shows that high damping of such
material is induced by the fact that the values of E,/Ep
and Ey /Eﬁ are very close. The damping of Kevlar epoxy
composite is insensitive to angle change because the
reduction rates of Ei/E& and E; Bﬁ are very close. Figure
9.11 shows the plots of E//Ly and EJ/E} , and n,./n, of
Kevlar epoxy composite and gravhite epoxv composite as
functions of 0, while s/d is kept as 10U. This suggests
idea that if a hybrid composite (graphite epoxy and Kevlar

epoxy composite) is made, damping of this hybrid composite

will be higher than that of graphite composite, while the
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stiffness of the hybrid composite will be greater than that
of Kevlar epoxy composite.

Figure 9.12 presents E;/E; of cgraphite epoxy composite
as function of 6 for different fiber volume fractions Ve,
when s/d=100. Differences in Ei/E& caused by different
volume fractions decreases when anyle increases. It is
also observed that an apparent reduction in E'/E; occurs
when angle increases from 0° to 15°. Figure 9.13 exhibits
the plots of n,/n, for graphite epoxy composite versus ©
for different fiber vnlume fractions, when s/d=10C. The
peak value of damping moves from about 50° to 30° when the
volume fraction changes from 0.1 to 0.6.

Three-dimensional plots using E; and n, as vertical
axis, and s/éd and 0@ as two base axes of Kevlar epoxy
compcsites are given in Figqures 9.14 and 9.15,
respectively. The associated contour curves are presented

in Figures 9.16 and 9.17.

9.3 Damping and Stiffness of Randomly Oriented
Short-Fiber Composites

Figure 9.18 gives the nondimensional plots of “r/nm'
E/EY, ,» and E% /E' of glass epoxy composite as functions of
s/d. 1t is observed that damping reaches its maximum value
at small values of s/d and decreases as s/d increases. The
storage modulus Eé/Eh monotonically increases as s/d
increases. However, loss modulus E;/Ea almost remains

unchanged. In Figures 9.19 and 9.20, nondimensional plots

of ng/ny, E'./E}, and E}/E} for graphite epoxy composite
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and Kevlar epoxy composite are presented separately. The R
variations of n./ng and EL/Ey for Kevlar epoxy composite
or graphite epoxy composite are similar to those of glass
epoxy composite. But, for Kevliar epoxy composite, EI/Fy
increases as s/d increases, while graphite epoxy
composite, E;/Ea has its maximum value around s/d=120.
Figures 9.21, 9.22 and 9.23 show similar plots cf ”Gr/”Gm'
Gé/qﬁ , and Gg/q; as functions of s/d for glass epoxy
composite, graphite epoxy composite, and Kevlar epoxy
composite, respectively. Variations of Ngr/ "ems G'y /Gy
and G}/Gp are almost the same as those of n./ny, E./Eg,
and E;/E& of corresponding composite, respectively.
Figure 9.24 shows the nondimensional plots of nr/nm
as function of fiber volume fraction V¢, using s/d as
parameter. It is observed that ne/ng, decreases as V¢
increases for small s/d as well as for large s/d.
Three-dimensional plots, using E; and né as vertical
axis, and Eg¢ and s/d as two base axes, of four kinds of
fiber composite are given in Figures 9.25 in 9.26, sepa-~
rately. The associated contour curves are presented in

Figures 9.27 and 9.28.

9.4 Damping and Stiffness of Laminated Composite--
Laminated_Plate Theory Approach

The numerical results of the damping and stiffness
analysis described in Chapter 5 are presented in this
section. Five types of lamination (quasi-isotropic

lamination, angyle ply lamination, cross ply lamination,
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unidirectional lamination, and a spccial kind of lamination
[On/“@4n]s) 6f graphite Epoxy composites are considered in
numerical examples.

Figure 9.29 exhibits nondimensional plots of D{; and
11 (€lexural normal damping) for [0,/90,/45,/~45;1,
[452/02/~452/902]S, and [452/--4'2/902/02]S as functions of
s/d. It should be noted that all those three kinds of
lamination have the same values of in-plane longitudinal
stiffness A{; and in-plane longitudinal damping yn;;. But
Figure 9.29 shows, as expected, that for the same s/4,
[02/902/452/-452]s has the highest value of Dj; and the
lowest value of pnjj. [452/-452/902/02]s kas the lowest
value of Dj; and the highest value of pn,;;, while [452/02/
-452,-’902]S has almost the average values of Dy; and of
FNy11 of the other two kinds of lamination. Alternatively,
Figure 9.30 shows the nondimensional plots of DJ¢ and pngg
(twisting damping) for those three kinds of lamination as
functions of s/d. In this drawing for same s/4, [02/902/
45,/-45,]1, has the lowest value of D¢ and the highest
value of Fle6 [452/-452/02/902]s has the highest value of
D¢e and the lowest value of gnge, and [455/0,/-45,/90,]
still remains around the average values of those other two
kinds of lamination. Figures 9.29 and 9.30 actually show
us how to design the quasi-isotropic laminated plate for
either maximum damping or maximum stiffness purpose.

Figures 9.31 and 9.32 show the nondimensional plots of

E{; and yn;; (in-plane longitudinal damping) of angle ply
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laminated graphite epoxy composite as function of @, usinc
s/d as a parameter. 1] increases with s/d for small
angles, say 0<20°. The variation of Ej, with s/d reduces
as O increases, «nd very small differences exist for ©>60°.
The [n); distinctively decreases as s/d increases for

small angles (say. €<30°), while the variation of nj;

with s/d reduces as 0 increases. Figures 9.31 and 9.32

are comparable to Figures 9.4 and 9.6 correspondingly. The
reduction in yn;; (or the increment in F';) of angie ply
laminated composite is not as sharp as that ¢f unidirec-
tional composite, when s/d is increased and the angle is
small,

In~plane shear stiffness Eés and in-plane shear
damping 1fgg of angle ply graphite epoxy composite as
function of 6, using s/d as parameter are shown in Figures
9.33 and 9.34, separately. Maximum Eé6 and minimum 166
occur at 6=45°., Larger dependences of Ege and pngg on ©
are observed for larger s/d. The reason why D'y, /D'y,
DéG/DGm' F“ll/“m' and F”GG/“Gm are not presented in
drawings is that those values are very close to the values
of E{1/Ey » Eg5/Gq 1N11/Nm, andé ynge/Ngy separately.

Figqures 9.35-9.38 present the nondimensional plots of

Dil' Fh11s Dégr and pnge of graphite epoxy composite
laminated with four kinds of lamination ({45/-45],.,
(45,/0,/-45,/90,15, [0/90144, and [0g];) as functions of
s/d. 1t is observed that for the same s/d, [45,’~45]4s has

the highest values of DéG and pny; and the lowest values

car _
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of Dil and pnge- The values of Dgg and pngg for (0/90) 44
and for [0gl, are same, and those values are almost
independent of s/d. This is because Ep and Gpo of
fiber composites are assumed to be indendpent of the fiber
length. D}, of [0glg is, as expected, higher than D{, of
(0/90],45 at the same s/d, but pgny, of those two kinds of
lamination are surprisingly close. The Dil' FN11r Dgg
and gneg of [452/02/—452/902]45 are just somewhere near
the middle range of those of [45/-45],44 and [0/90],..

The characteristic property of [@,/-04,14 is that
its Di{¢ and D4, are very close to zero. For example,
D]g/DYy ©r Dbg /D'y 0f this lamination for graphite epoxy
composite is less than 0.02 for all angles, while those of
angle ply lamination are less than about 0.1l1 for all
angles. Numerical results show that Dj;, gnj3, Dgg. and
FN66 of [02/-08]S are very close (difference within 2%) to
those of [0/-@]55. But Eil and EéG (or 1Ny, and In66)
are in general less (or greater) than those of [G/—G]Ss

(maximum differences ranging from 13% to 30%).

9.5 Damping and Stiffness of Laminated Fiber Composite--
Enerqy Approach

There are twenty-one different kinds of material
damping induced from ij/C{j (i, 3 =1, 2.. . 6) for
anisotropic materials. In the energy approach, material
damping of structure is just the ratio of the sum of

X E%j Cij to the sum of % Cij Cij' Therefore, different

values of material damping could be observed for one
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material under different kinds of loading and boundary
conditions. In the author's opinion, damping analysis
through the energy approach is more acceptable than lami-
nated plate approach, because the energy approach consi-
ders the influence of all stresses on the dissipated
energy, while laminated plate approach considers one
stress at a time. The results of damping analysis through =
the energy approach presented in Chapter 6 are discussed
in this section.

Figure 9.39 shows the difference between material
damping through the energy approach and through the lami-
nated plate approach for a 60x60x10 cross plied
(05/90¢/0g) graphite epoxy composite under uniform in-
plane tension load along x direction. The difference is
mainly caused by the fact that there exists some stress
other than ¢ ; for example, 71,, is not negligible in
certain regions. The difference increases when the value {Yﬁ
of s/p 1s increased. 1In other words, continuous fiber |
composites have more apparent difference of damping values
through those two approaches than discontinuous (short-
fiber) composites do.

Figure 9.40 presents the influence of plate thick-
ness and of the lamination on the damping value by the
enerygy approach under in-plane uniform tension load. It is
noticed that either increasing the number of interfaces or

reducing the total plate thickness will, in general, reduce

the difference between damping values of those two
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approaches. 1t should also be noted that, for an isotro-
: pic material under tensional load along x direction, the
‘ damping value of the energy approach is same as the value
of 1"11 through the laminated plate theory app:.oach,
More numerical results of using the energy approach
are under consideration. JTn particular, the effects of
interlaminar stresses on damping and stiffness of

laminated ccocmposites due to the difference in stacking

S S T S § T —

sequence, mismatch at the interfaces, and width-to-
thickness ratic a/h will be studied.

. In addition, we are also interested in studying the
effects on damping due to various boundary conditions

under the same flexural load. The results will be

»

—aal ¥ 2 _ - 3 2 A
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2.6 Experimental Resulls of Damping
and Stiffness

Figure 9.41 presents some experimental results by the

impulse hammer technique [35, 36] about material damping

I KA AT DT . s r v e

and stiffness of graphite epoxy composite beams. Experi-

mental results of stiffness are very close to those of the

analytical results, while experimental resuits of damping
are not so close to the analyftical rxesults. A similar

trend is also presented in Figure 9.42 where experimental

SOIEEm s s

: results (35, 36] about damping and stiffness of off-axis
unidirectional continuous graphite epoxy composite beams
are compared with analytical results. Table 9.1 shows the

experimental results of dampina and of the first mode
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nature frequency (Lhis quantity is proportional to the
stiffness of the structure) ¢f five cross ply short-fiber
glass epoxy ccimposite plates., It is observed that high
value of s/p (either increase fiber length, s, or reduce
the gap between fiber tips, p) will increase the nature

frequency and decrease the damping.

9.7 Optimization of Damping and Specific 5tiffness
of Fiber Composites

Accoxding to the prescription about optimizing damp-
ing ia Chapter 8, some ¢optimum designs are discussed in
this section for graphite epoxy composites and for hybrid
composites keeping V¢ equal to 0.65. The design vari-
ables include the fibeir aspect ratio, s/d, and the ratio
of the longitudinal distance between fiber tips, p, to the
fiber diameter, d.

Tabie 9.2 shows the influence of weighting constants,
Ty &.:d Ty ob the optimum desiagn for 0/90/0 graphite epoxy
composites under situations of case one. By increasing
T,, s/p is reduced; while by increasing Ty, s/p is
increased. These imply that to have smaller resonant
deformation, larger distance between fiber tips is
preferred; while to have higher specific stiffness,
smaller distance betwesen fiber tips is required.

Table 9.3 shows the cptimum design for cross ply
grapnite epoxy composites and hybrid composites under case

one situation and having the same total thickness, with

Ty=1 and Tp=5. There is no difference in the optimum
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values of design variables s/d and p/d for 0/90/0 and
0/90/0/90/0 graphite epoxy composites. For the same total
thickness, with Tl=l and T,=5, discontinuous fibers give a
high value of objective function in the stacking sequence
OG/9OG/0F/9OK/S; while continuous fibers give high value
of the objective function in the stacking sequence
0%/90%X/06/906/90%/s where the superscripts G and K repre-
sent graphite and Kevlar, respectively, and the fiber
composites having s/p=2593. can be treated as continuous
fiber reinforced composites. When comparing the value of
objective function of each optimum design for each case,
one can discover that 0X/90K/0%/90G/s has the highest
value of objective function. This indicates that the con-
tinuous hybrid fiber composite plate with the stacking
sequence OK/90K/0G/QOG/S is the optimum design for case
one,

Figqure 9.43 shows the contour curves of objective
function of case one vs s/d and s/p (keeping Ty=1, T,=5).
It is observed that there probably exists an acceptable

region as optimum design. In fact, the term (s/p) in

ave
Tables 9.2, 9.3 and 9.4 is the average value of ratioc s to
P at all points whose objective value is within 99.95% and
100.05% times of the objective value of the optimum design
shown in s/d and p/d items. Numerical results show this

region ranging from s/d=2000 to s/d over 9000 for case

one, That means, as long as s/p is kept equal to 53.1 and

s/d over 2000, one will get an acceptable optimum design
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(when T;=1 and T,=5) for 0/90/0 oxr 0/99/0/90/0 cross ply
graphite epoxy composite plates under case one conditions.
The optimum designs of case two (see Table 9.3) {is
very close to those of case one, although D for those two
cases are different. It is because D,;, and Dgg are too
small relative to D;; and D,, (see Equation 8.20 and

Equation 8.138).

9.8 Conclusions

Since the material damping and stiffness of continucus
or discontinuous fiber composites depends upon many quanti-
ties such as stiffness ratio Ef/Em, fiber aspect ratio
s/d, longitudinal distance beetween fiber tips p, loading
(or fiber) angle @, fiber volume fraction Vg, fiber and
matrix damping values, and stacking sequence, it is not
feasible to discuss the material damping and stiffness by
considering all the possible variations of all the
independent guantities simultaneocusly. However, based
upon the numerical results presented in this study, we can
make cthe following conclusions:

A. About Unidirectional Fiber Composites
l. Hich damping could be achieved by small ©, small
s/d, and high p; while high stiffness could be
obtained through high Vg, small 6, large
s/d, and low p.
2. Damping of discontinuous fiber composites is no

less than that of continuous fiber composites.
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3. For small angle, high s/d gives high stiffness;
while low s/d biings high damping. For large
angles, damping and stiffness are independent of
s/d.

B. About In-Plane Randomly Oriented Fiber Composites

l. Relative to unidirectional fiber composites, in-
plane randomly oriented fiber composites have
lower stiffness at the price of keeping high
damping in all directions parallel to the plane,

2, Variations of shear damping and shear modulus vs
s/d are very close to those of in-plane damping
and in-plane stiffness, respectively.

3. Influence of Vg on in-plane damping becomes less
when s/d is smaller.

C. About Laminated Fiber Composites

1. In a laminated composite, there are eighteen
damping coefficients in general. For symmetric
laminates, the number of damping coefficients is
reduced to twelve. Among the twelve, there are
only four important coefficients namely; N1}
(or yny3) (extensional), rngg {(in-plane sheerj,
FN11 (flexural normal), and FN66 (flexural shear
or twisting).

2. As unidirectional composites, laminated composites

with higher damping are usually with lower

stiffness.
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3. 1In general, laminates with large fiber aspect ratio
s/d and very small fiber tip spacing {p=0) will
produce high damping and high stiffness.

4. The analytical results in damping from the enercy
approach are higher than the corresponding results
obtained from laminated plate approach. This
implies that the interlaminar stresses tend to
dissipate more energy.

5. The influence of interlaminar stresses on damping
is very significant for the laminates with
large fiber aspect ratio s/d or relatively large
thickness-to-width ratio h/a.

RECOMMENDATIONS

i. Use aligned fiber with iarge fiber aspect ratio
s/d and very small fiber tip spacing (p=0)

(if fabrication process permits).

2. Use hybrid fiber composites. In particular, use
the combination of Kevlar-epoxy and graphite-
epoxy laminated composites. The advantage of using
such a combination is due to the higher damping in
Kevlar fibers and higher stiffness in graphite
fibers.

D. About Optimization

Optimumization of damping and specific stiffness
| depends on the preference of high specific stiffness
i or high damping (T; or TZ)' material property of

fiber, the stacking sequence for hybrid composite,
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and boundary conditions. A continuous fiber rein-

forced hybrid orthotropic composite plate with stack-
ing sequence OK/9OK/0G/90G is the optimum design for
clamped (or simply supported; square plate under the

free vibration.
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Ve=0.65
p=4d
11.1:

Figure 9.14: Three-Dimensional Plots of E;/E% vs 0 and s/d
for Unidirectional Kevlar Epoxy Composites
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Figure 9.15: Three-Dimensional Plots of nx/nm vs 0 and s/d
for Unidirectional Kevlar Epoxy Composites
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Figure 9.16: Contour Curves of E;/Eé‘vs 0 and s/d for
Unidirectional Kevlar Epoxy Composites
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Figure 9.17:

Contour Curves of n /n_ vs 0 and s/d fer
Unidirectional Kevlar Epoxy Composites
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Table 9.1: Experimental Results of 05/905/0g Glass
Epoxy Composite Plates

s (mm) p {(mm) d (mm) Ve £, (Hz) n
19. 1.59 .009 .558 92.8 .0042
25.4 1.59 .009 .965 95.3 .0041
38.1 1.59 .009 .575 97.1 .0040
25.4 0.05 .009 .575 109.8 0036

Table 9.2: Influence of Weighting Copstants on Optinum
Design for Case One

Lamination T; T, s/d p/a (s/p) 3ve 5'0o ﬂ
pD} m

0/90/0 1 3 9022. 121. 74.4 1.27 .47
0/90/0 1 5 9022, 170. 53.1 1.19 .52
0/90/0 1 10 9008. 214. 42.1 1.12 .56
0/90/6 0 5 9020. 267, 33.8 i.06 .60

B P R O SR > 2 AR B S S I,
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Table 9.3: Optimum Designs of Cross Ply Composite
Plates for Case One

‘m

oD

(Q/90/0)G 1 5 _9022. 170. 53.1 1.19 .52

19130/0/90/0)6 1 5__8994. 169. 53.1 1.19 .52

OG/9OG/0K[90K/S 1 5_9007. 152. 59.4 1.29 .33

OK/90K/OG[9OG/S 1 5 _9993. 3.2 2593.1 1.11 .69

Table 9.4: Optimum Designs of Cross Ply Composite
Plates for Case Two

Lamination T, T, s/d p/d (s/Playe Brp, I

oD!

_{9/90/0)G 1 5 9019. 170. 53.0 5.10 .46

(0/90/0/90/0)G 1 9020. 170. 53.0 5.10 .46

. K .
0%/90%70% /908 /s 1

9010. 152. 59.3 5.53 .48 R

[, SRS LY,

6%/90%/0%/90%/s 1 9993. 3.2  2747.8 4.80 .65

TSI T R Pt A O R e xS S TR W D5 - B e O R X0 o PR 8 2 X SR R i P sty e e
“ {

;
;
R
g
’




APPENDIX A
ENERGY EXPRESSION OF DAMPING FCR LAMINATED COMPOSITES

Equation 2.22 indicates that the material damping, n,
equals to the ratio of the enerqgy dissipzted in a cycle,
(UD)cyc' the product of 2¢, and the maximum strain energy

stored irn the body, U under a periodic vibration. Since

sl
the maximum strain energy of a beam under static load and
under first mode vibration are equal, if the maximum

deflection are the same. If the material damping of this

. I PP SR - L S B £ 2 -
UiAdoLpaLCU LIl LUT PTalll wailiihiill a

LT e - 2 -— 2L e ee e
vcati Lo ANIIUWIIL, LUC c'-uchy

cycle of the first mode vibration can be determined by
(Up) cye = 27 n Ug A.l

where U, can be determined by calculating the strain
enerqgy of the statiscally-deformed beam having the same
amplitude of the deflection as that of the first mode
vibration. As it is well known that the dominant stress

in a beam under fiexure vibration is normal stress, say

Ox. Therefore, Ug and (UD)cyc can be abtained

approximately as

146
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and

1l
(UD)cyc = 20 nx./ﬁi Oyx €y av A.3

Where €y is the normal strain, and Ny is determined by
E*/Ei . To be more accurate, all stresses and strains in
the beam should be included when calculating the maximum
strain energy and the dissipated energy.

Ungar and Kerwin ([56) derived the expressions for the

loss factor of any series-parallel array of m viscoelastic

springs 5
m
'El (UDj)cyc
n= J; A.4
£ 2n U_s
g1 %
1 2
USj = ‘2‘ k] Xj A5
where Usj denotes the maximum strain energy stored in a ’

deflection x.

j in the jth lossless spring of stiffness kj,

and (UDj)cyc denotes the energy dissipated in the jth
viscoelastic spring éuring a cycle. Since there are six
different components in the stiffness matrix for an

orthotropic material, one can treat an orthotropic

material as a structure composed of six springs.
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Consequently, the material damping of a laminated n plies
composite, n, in the first mode vibration can be

determined by

n
El(qUD)cyc
n = Q;; A.6

I LU
g=1 1°

where

" - *

In which Vq is the volume of the gth layer in the

laminated composite, cgj p Cﬂj and C;j are the storage

moduli, the loss moduli, and the complex moduli for a

viscoelastic material, respectively.




APPENDIX B
FORMULATION OF FINITE ELEMENT METHOD
This appendix briefly prescribes the formulation of
the finite element method utilized in energy approach to
determine the displacement and the sﬁrain fields for an
elastic body. The material constants are also presented

here.

B.l Stiffness Matrix

The nonzero elements of stiffness matrix [C] for an
orthotropic material when its coordinates coincide with

principal coordinates are given in Reference ([57] as:

Cll (1 - \)23 \)32)El A B.1

149

Cyp = (vyp + v33 vi3)Ey; A B.2

Cia = (Vi3 + vy Vy3)E3 & B.3

Ca2 = (1 = vy3 v3;)E; & B.4
| Ca3 = (va3 + vy Vvy3)E3 4 B.5

C33 = (1 = vy, vy )E; A B.6
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C4q = Gp3 B.7
Cgs = G3) B.8
Cée = C12 B.9
where
| . )

1= viaVy1 = Va3zviz = V31viz - 2V1V32Vi3 B.10

Since the material properties of a laminar fiber composite
with the coordinates parallel to ana transverse to the
fiber., as Figure B.1l, can be treated as transversely

| (in 2, 3 directions) isotropic,

== ‘

/‘_ 1

Figure B.1l: Principal coordinates of fiber composite
material




one has

and

V12
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V23

V32

V13
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]
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where EL, Ep, Gpee vpp are defined by Equations 3.13,
3.15-3.17, and vyppe is assumed to be the Poisson's ratio
of the matrix. By substituting Equations E.i1il1 and B.12
into Equations B.1-B.9, the [C] matrix of transversely
isotropic material is then obtainei. Equations B.ll and
B.12 show that there are only five independent material

constants, namely, EL, ET, Gyre Vppe and Ve

B.2 Formulations of Finite Element Method

A three-dimensional elastic body bounded by surface §
is loaded by concentratecd forces p on nodes and surface
traction t on surface Sl. Assume that the bedy force is
negligible and that the whole system is adiabatic and
conservative. According to the principle of stationary
potential energy [58], the equilibrium is ensured if the
total potential energy is stationary for variation of

admissible displacement, i.e.

§ (U -W,) =0 B.13

where U is the strain enerqy, and w, is the work done by

e
external loads. In fact, in the elastic case, potential
erergy is not only stationary but is a mirimum ([59].

If there is not any imitial stress or styrain, the

strain energy U and the work done by the external load are

T
/ {e} {o} av B.14

v

c
L]
roL e
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and
m T T
We =1 {p} {u} + (¢} {u} aa B.15
i=j i i
Sy
where
T
{e} = ley €y €2 Yyz Yxz Yxy) B.16
T
{oa} = lo, Oy 02 Tyz Txz Txyl B.17
T
{p}i = [Pyy Pyj Pyyl B.18
T
T
ful = [ug v, u,) B.20
T
{t} = It ty tg] B.21

in which u,; is the nodal displacement in x direction at
the ith node, and P,y 1s the coicentrated force at the ith

node in x direction, mis the total number of nodes where

concentrated load is applied.
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By introducing stiffness matrix [C] and the shape

function matrix [N}, i.e.

{o}

ic1 {e} B.22

{u}

(N] {q} B.23

strain {e} can be expressed as function of nodal

displacement {q} by using strain-displacement relation

{e} = (L] {q} B.24

‘"herefore, Equations B.l4 and B.l15 can be rewritten as

1 T T
v=3 {a} (w1 (c) (w) {q} av B.25
Vv
m T
W= 1 {p} 81 {q} + /{t} N1 {q} aa
i=j i i

By using Equations B.25 and B.26, a system of 3xn equa-
tions is obtained from Equatiovun B.13, if the total number

of nodes is n.

(k1 {q} = {%} B.27
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where
_ T :
k1, . = Ll [cl (L] av B.28
{q}3nx1 = [qxl qyl qu L qxn qyn qzn]
B.29
_ m T T
{f =} {p} Nl + {t} (N] aa
3nx1 i=j i
B.30

In this study, the interpoclation functicns of linear
and parabolic isoparametric elements {(eight nodes and
twenty nodes, respectively) [55] are choscu for shape
functions. Each element has the same thickness as the ply
thickness of fiber composite. Once the nodal displicement
{q} is determined by solving the system equations
(Equation B.27), the displacement and the strain fields

can be obtained by Equations B.23 and B.24, respectively.
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